Formations à distance

Toutes nos formations sont accessibles à distance en classes virtuelles : accès à l'infrastructure de travaux pratiques, machines physiques, outils pédagogiques, échanges avec le formateur. N'hésitez pas à nous appeler pour réserver une formation ou pour participer aux serious games !

Financement FNE-Formation 2021

Toutes nos formations sont éligibles au FNE-formation 2021

Formation : BigData Architecture et technologies

Durée2 jours
Prix 1230 €
Code coursCB001
Dates 31 aout au 1 septembre
16 au 17 novembre

classe virtuelle
(cliquez sur une date pour vous inscrire)

Public:

Chefs de projets, architectes, développeurs, data-scientists, et toute personne souhaitant connaître les outils et solutions pour concevoir et mettre en oeuvre une architecture BigData.

Objectifs:

Comprendre les concepts essentiels du BigData, et les technologies implémentées. Savoir analyser les difficultés propres à un projet BigData, les freins, les apports, tant sur les aspects techniques que sur les points liés à la gestion du projet.

Connaissances préalables nécessaires:

Il est demandé aux participants d'avoir une bonne culture générale sur les systèmes d'information.

Validation des pré-requis

Validation des attentes

Programme détaillé de la formation


( logo acroreadTéléchargez le programme) :
IntroductionL'essentiel du BigData : calcul distribué, données non structurées. Besoins fonctionnels et caractéristiques techniques des projets.La valorisation des données.Le positionnement respectif des technologies de cloud, BigData et noSQL, et les liens, implications.
Concepts clés : ETL, Extract Transform Load, CAP, 3V, 4V, données non structurées, prédictif, Machine Learning.
Exemple d'application : Amazon Rekognition, Polly, EMR.
L'écosystème du BigData : les acteurs, les produits, état de l'art.Cycle de vie des projets BigData.
Emergence de nouveaux métiers : Datascientists, Data labs, Hadoop scientists, CDO, ...
Rôle de la DSI dans la démarche BigData. Gouvernance des données: importance de la qualité des données, fiabilité, durée de validité, sécurité des données
Aspects législatifs : sur le stockage, la conservation de données, etc ...sur les traitements, la commercialisation des données, des résultats
Stockage distribuéCaractéristiques NoSQL. Les différents modes et formats de stockage. Les types de bases de données : clé/valeur, document, colonne, graphe.Besoin de distribution. Définition de la notion d'élasticité. Principe du stockage réparti.
Définitions : réplication, sharding, gossip, hachage,
Systèmes de fichiers distribués : GFS, HDFS, Ceph.Les bases de données : Redis, Cassandra, DynamoDB, Accumulo, HBase, MongoDB, BigTable, Neo4j, ..
Données structurées et non structurées, documents, images, fichiers XML, JSON, CSV, ...
Moteurs de recherche. Principe de fonctionnement. Méthodes d'indexation.Recherche dans les bases de volumes importants. Présentation de Elasticsearch et SolR
Principe du schemaless, schéma de stockage, clé de distribution, clé de hachage
Calcul et restitution, intégrationDifférentes solutions : calculs en mode batch, ou en temps réel,sur des flux de données ou des données statiques.
Les produits : langage de calculs statistiques, R Statistics Language, sas, RStudio; outils de visualisation : Tableau, QlikView
Ponts entre les outils statistiques et les bases BigData. Outils de calcul sur des volumes importants : Kafka/Spark Streaming/Storm en temps réel, Hadoop/Spark en mode batch.
Zoom sur Hadoop : complémentarité de HDFS et YARN. Restitution et analyse : logstash, kibana, elk, zeppelin
Principe de map/reduce et exemples d'implémentations, langages et sur-couches.
Présentation de pig pour la conception de tâches map/reduce sur une grappe Hadoop.

Modalités et délais d'accès
Méthodes mobilisées

Pythagore-F.D.

01 55 33 52 10
pfd@pythagore-fd.fr
Calendrier
Code Cours:CB001

Contenu de la formation
BigData Architecture et technologies:

Accès à la liste des cours



Vous pouvez bien entendu composer votre programme personnel à partir de nos descriptifs de cours