Formations au coeur des technologies

Essayer, tester, échanger les bonnes pratiques, partager les retours d'expériences, ...
toutes nos formations sont disponibles à distance (classes virtuelles) et en centre de formation (présentiel), au choix.
Vous pouvez même changer de modalité en cours de formation, si vous avez des contraintes : par exemple, commencer en présentiel et continuer les jours suivants à distance.
Les outils pédagogiques et l'infrastructure de travaux pratiques mis à disposition sont accessibles depuis nos locaux, ou depuis votre entreprise ou votre lieu de télétravail, à volonté
N'hésitez pas à tester nos formations et nos serious games !

Formation : Les architectures et infrastructures pour le BigData

Durée2 jours
Prix1 270 €
Code coursCB001
Dates8 au 9 juin
30 au 31 août
18 au 19 octobre
13 au 14 décembre

(cliquez sur une date pour vous inscrire)

Public:

Chefs de projets, Architectes, Développeurs, Data Scientists ou toute personne souhaitant connaître les outils pour concevoir une architecture Big Data, ...

Objectifs:

A l’issue de la formation, le stagiaire sera capable d’initier la conception d’une architecture et d’une infrastructure Big Data, en disposant d’une vue d’ensemble des différentes solutions dédiées au traitement des données de masse.

Connaissances préalables nécessaires:

avoir une bonne culture générale des systèmes d'information et plus particulièrement, avoir des connaissances de base des modèles relationnels, des statistiques et des langages de programmation.

Objectifs pédagogiques:

  • Comprendre les principaux concepts du Big Data ainsi que l'écosystème technologique d'un projet
  • Big Data
  • Savoir analyser les difficultés propres à un projet Big Data
  • Déterminer la nature des données manipulées
  • Appréhender les éléments de sécurité, d'éthique et les enjeux juridiques
  • Exploiter les architectures Big Data
  • Mettre en place des socles techniques complets pour des projets Big Data.

Programme détaillé de la formation


(logo acroreadTéléchargez le programme) :
Comprendre les principaux concepts du Big Data ainsi que l'écosystème technologique d'un projet Big Data
L'essentiel du BigData : calcul distribué, données non structurées. Besoins fonctionnels et caractéristiques techniques des projets. La valorisation des données. Le positionnement respectif des technologies de cloud, BigData et noSQL, et les liens, implications.
Concepts clés : ETL, Extract Transform Load, CAP, 3V, 4V, données non structurées, prédictif, Machine Learning.
L'écosystème du BigData : les acteurs, les produits, état de l'art. Cycle de vie des projets BigData.
Atelier: Amazon Rekognition, Polly, EMR.
Savoir analyser les difficultés propres à un projet Big Data
Rôle de la DSI dans la démarche BigData. Gouvernance des données: importance de la qualité des données, fiabilité, durée de validité, sécurité des données
Emergence de nouveaux métiers : Data-scientists, Data labs, Hadoop scientists, CDO, ...
Intégration avec les outils statistiques présents et les outils BigData futurs.
Déterminer la nature des données manipulées
Les différents modes et formats de stockage.
Les types de bases de données : clé/valeur, document, colonne, graphe. Besoin de distribution. Définition de la notion d'élasticité. Principe du stockage réparti.
Données structurées et non structurées, documents, images, fichiers XML, JSON, CSV, ...
Atelier: démonstrations avec une base MongoDB et une base Cassandra sur des données de différents types.
Appréhender les éléments de sécurité, d'éthique et les enjeux juridiques
Les risques et points à sécuriser dans un système distribué.
Aspects législatifs et éthiques: sur le stockage, la conservation de données, ..., sur les traitements, la commercialisation des données, des résultats
Atelier : mise en évidence des problèmes liés à la réplication inter-régions et concernant les aspects juridiques des données : droits d'exploitation, propriété intellectuelle, ...
Etude des failles de sécurité sur une infrastructure Hadoop.
Exploiter les architectures Big Data
Les objectifs de la supervision, les techniques disponibles. La supervision d'une ferme BigData.
Objets supervisés. Les services et ressources. Protocoles d'accès. Exporteurs distribués de données.
Définition des ressources à surveiller. Journaux et métriques.
Application aux fermes BigData : Hadoop, Cassandra, HBase, MongoDB
Besoin de base de données avec agents distribués, de stockage temporel (timeseriesDB)
Produits : Prometheus, Graphite, ElasticSearch.
Présentation, architectures.
Les sur-couches : Kibana, Grafana.
Atelier: mise en oeuvre de prometheus pour la supervision d'une ferme Cassandra sur une infrastructure distribuée multi-noeuds.
Mettre en place des socles techniques complets pour des projets Big Data.
Etude des différents composants d'une infrastructure BigData :
Stockage distribué : réplication, sharding, gossip, hachage,
Principe du schemaless, schéma de stockage, clé de distribution, clé de hachage
Systèmes de fichiers distribués : GFS, HDFS, Ceph. Les bases de données : Redis, Cassandra, DynamoDB, Accumulo, HBase, MongoDB, BigTable, Neo4j, ...
Calcul et restitution :Apport des outils de calculs statistiques
Langages adaptés aux statistiques, liens avec les outils BigData.
Outils de calcul et visualisation :R, SAS, Spark, Tableau, QlikView, ...
Caractéristiques et points forts des différentes solutions.
Atelier:mise en oeuvre du sharding avec une base de données MongoDB sur une infrastructure distribuée

Modalités et délais d'accès
Méthodes mobilisées