

Entêtes IPv6

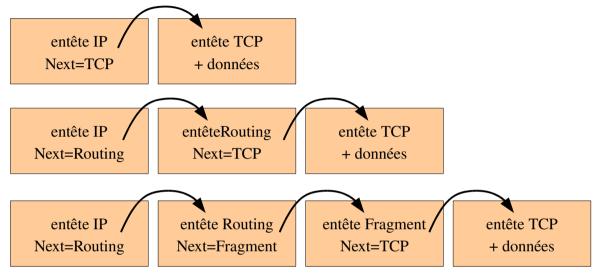
Format des trames

Les en-têtes sont simplifiées

- Le nombre de champs a été réduit de moitié
- Les options sont placées dans des entêtes séparées
- La longueur des options n'est plus limitée à 40 octets

La taille de l'entête passe de 20 octets à 40 octets

- Header checksum, checksum calculé sur les bits du Header. => supprimé
- Adresses sur 32 bits ==> 128 bits
- Alignement sur 32 bits ==> 64bits


Trame IPv6

- Traffic Class: priorités ou classes de trafic
- Flow Label: marquage des paquets spéciaux
- Payload Length: longueur en octet des paquets après entête. Autorise des paquets > 64k si Payload=0 et que l'on met la taille dans l'entête de l'option « Hop-by-hop »
- Next Header: spécifie le type de l'entête suivant. On utilise les mêmes valeurs que pour le champ proto de Ipv4 (ICMP=1, TCP=6, UDP=17)
- Hop Limit : fonctionne sur le même principe que le champ TTL: -1 à chaque traversée d'équipement
- Adresse destination: adresse de l'équipement cible. On peut aussi y mettre l'adresse d'un équipement différent si l'entête « Routing Header » est ajoutée

Entêtes supplémentaires

Principe

Règles de fonctionnement

Les en-têtes supplémentaires ne sont pas examinées ou manipulées par les noeuds intermédiaires.

La seule exception est l'en-tête de l'option noeud par noeud ("Hop-by-hop"): elle porte des informations qui doivent être examinées par les noeuds du réseau.

L'en-tête "Hop-by-Hop" doit suivre immédiatement l'en-tête IPv6.

Lorsqu'une trame arrive à destination, le premier en-tête supplémentaire, ou l'en-tête transport dans le cas d'absence d'en-tête supplémentaire, est traité.

Le contenu de chaque en-tête déterminera s'il faut, ou pas, traiter l'en-tête suivant.

Chaque en-tête supplémentaire est d'une longueur d'un multiple de 8 octets, afin de conserver un alignement de 8 octets pour les en-têtes suivants.

Ordre des en-têtes supplémentaires

Lorsqu'il y a plus d'une en-tête supplémentaire utilisée dans le même paquet, les en-têtes doivent apparaître dans l'ordre suivant:

•	IPv6	41
•	ICMPv6	58
•	Hop-by-Hop	0
•	Routage	43
•	Fragmentation	44
•	Confidentialité	50
•	Authentification	51
•	End-to-End Options	59
•	Destination	60

Chaque type d'en-tête ne doit apparaître qu'une seule fois dans le paquet (excepté dans le cas d'une encapsulation IPv6 dans IPv6, où chaque en-tête IPv6 encapsulée doit être suivie par son propre en-tête supplémentaire).

En-têtes "standards"

En-tête de routage

Utilisée par une source pour établir une table de noeuds intermédiaires (ou ensemble de groupes) que doit emprunter le paquet pour arriver à destination.

En-tête de fragmentation

Dans IPv6, la fragmentation n'est réalisée que par la source et plus par les routeurs intermédiaires.

En-tête d'authentification

Utilisé pour authentifier et assurer l'intégrité des paquets. La non-répudiation est obtenue par un algorithme d'authentification exécuté sur l'en-tête d'authentification.

En-tête de confidentialité

Cherche à donner une confidentialité et une intégrité en chiffrant les données à protéger et en les plaçant dans la section données de l'en-tête de confidentialité (Privacy Header).

Suivant les exigences de sécurité de l'utilisateur, soit la trame de couche transport (e.g. UDP ou TCP) est chiffrée, soit le datagramme entier d'IPv6 l'est.

Adressage IPv6

Les adresses IPv6 sont des identifiants de 128 bits (16 octets) pour des noeuds ou un ensemble de noeuds.

Il y a trois types d'adresses:

- Unicast: employé pour envoyer un datagramme à un unique noeud.
- Cluster: employé pour identifier un groupe de nœuds qui ont en commun un préfixe d'adresse. Un datagramme envoyé à une adresse cluster sera délivré à un membre du groupe.
- Multicast: employé pour envoyer un datagramme à tous les membres d'un groupe de noeuds.

Il n'y a pas d'adresses de broadcast dans la version d'IPv6, les adresses multicast assurent leurs fonctions.

Comme dans IPv4, un sous-réseau IPv6 est associé à une seule liaison. Mais IPv6 permet aussi d'associer plusieurs sous-réseaux à une même liaison.

Représentation des adresses

Il y a trois formes conventionnelles de représentation d'adresses IPv6:

• x:x:x:x:x:x:x, huit blocs, où les 'x' sont les valeurs hexadécimales de 2 octets chacun.

Exemples:

FEDC: BA98: 7654: 3210: FEDC: BA98: 7654: 3210

1080:0:0:8:800:200C:417A

Il n'est pas nécessaire d'écrire tous les zéros devant un chiffre hexadécimal dans un champ individuel, mais il doit y avoir au moins un chiffre dans chaque champ.

• Pour avoir une écriture facilitée, on peut supprimer les zéros. "::" indiquera un ou de multiple groupes de 16 bits à 0.

Par exemple l'adresse multicast suivante:

FF01:0:0:0:0:0:43

sera représentée de la manière suivante:

FF01::43

les "::" ne peuvent apparaître qu'une seule fois dans l'adresse.

• dans un environnement mixte de noeuds IPv6 et IPv4: x:x:x:x:x:d.d.d.d, 6 groupements de 16 bits et 4 groupements de 8 bits de la représentation standard d'IPv4.

```
Exemples:
```

```
0:0:0:0:0:0:13.1.68.3
0:0:0:0:0:1:129.144.52.38
```

::13.1.68.3

::1:129.144.52.38